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SUMMARY 

An i n v e s t i g a t i o n  was made in   the   Langley  V/STOL tunne l  to determine,  by 
the   t r a i l i ng -wing   s enso r   t echn ique ,   t he   t r a i l i ng -vor t ex -a l l ev ia t ion   e f f ec t ive -  
ness of both a one-  and a two-f in   configurat ion (semicircular wi th  a r ad ius   o f  
0.043 semispan)  on a jumbo- je t  t r a n s p o r t   a i r p l a n e  model i n  its landing  config-  
ura t ion .  The f i n s  were loca ted   on   the  upper surface o f   t h e   t r a n s p o r t  model 
wing along  the  30-percent-chord  l ine.  The f i n   c o n f i g u r a t i o n s  were e f f e c t i v e  
in   reducing   the   vor tex- induced   ro l l ing  moment, by amounts  varying  from 28 to 
60 p e r c e n t ,   o n   t h e   t r a i l i n g  wing  model l oca t ed  a t  a d i s t a n c e   o f  7.8 t r a n s p o r t  
mode1 wing spans  downstream  of   the  t ransport  model. 

The f low  ove r   t he   f i n s   and   ove r   t he   t r anspor t   a i rp l ane  model  wing down- 
stream o f   t h e   f i n s  was observed to be   separa ted   and   tu rbulen t .  A l l  f i n  
conf igura t ions   caused  a r e d u c t i o n   i n  maximum lift c o e f f i c i e n t ,  a p o s i t i v e  
increment   in   d rag   coef f ic ien t ,   and  an increment  in  nose-up  pitching-moment 
c o e f f i c i e n t  on t h e   t r a n s p o r t   a i r p l a n e  model. 

INTRODUCTION 

The s t rong   vo r t ex  w a k e s  genera ted  by l a r g e   t r a n s p o r t   a i r p l a n e s  are a 
p o t e n t i a l   h a z a r d  to smaller a i r c r a f t .  The National  Aeronautics  and  Space 
Adminis t ra t ion is involved   in  a program  of  model tests, f l i g h t  tests, and 
t h e o r e t i c a l   s t u d i e s  to  invest igate   aerodynamic means of   reducing   th i s   hazard .  
(See   r e f .  1 .) 

R e s u l t s  of   recent   wind-tunnel   and  water- tank  invest igat ions  have  indi-  
c a t e d   t h a t   t h e   t r a i l i n g   v o r t i c e s   b e h i n d  a swept-wing t r a n s p o r t   a i r p l a n e  model 
can be a t t enua ted  by f ins   o f   var ious   shapes   and   p lanforms when they  are loca ted  
well forward  on  the upper surface  and  near   the  midspan  of   the  t ransport  a i r -  
p lane  wing.  (See  ref. 2.) I n   t h e s e   i n v e s t i g a t i o n s ,   f i n s   w i t h   r e c t a n g u l a r ,  
t r i a n g u l a r ,  and semicircular shapes were t e s t e d .  It  was found   t ha t  semi- 
circular f i n s   p r o v i d e d  as much or more a l l e v i a t i o n  a t  t h e  same downstream 
l o c a t i o n   t h a n   e i t h e r   t h e   t r i a n g u l a r  or r e c t a n g u l a r   f i n s   h a v i n g   t h e  same plan- 
form area. A l l  d a t a   r e p o r t e d   i n  reference 2, however, were ob ta ined   w i th   t he  
t r a n s p o r t   a i r p l a n e  model set  a t  on ly   one   angle  of attack in   each   o f   t he  test 
f a c i l i t i e s  (4O in   wind-tunnel   invest igat ions  and 5O in   water- tank  invest iga-  
t i o n s )   w i t h   t h e   h o r i z o n t a l - t a i l   i n c i d e n c e   a n g l e  set  a t  Oo i n   bo th  tes t  f a c i l -  
ities. The d i f f e r e n c e   i n  model a t t i t u d e   i n   t h e  two fac i l i t i es  r e s u l t e d   i n  
s l i g h t l y   d i f f e r e n t   l i f t   c o e f f i c i e n t s  and   ou t -of - t r im  condi t ions   for   each   f in  
c o n f i g u r a t i o n   o n   t h e   t r a n s p o r t   a i r p l a n e  model. Also, wi th   t hese   l imi t ed   da t a ,  
an   a s ses smen t   o f   t he   ove ra l l   e f f ec t s  of t h e   v a r i o u s   f i n   c o n f i g u r a t i o n s   o n   t h e  
long i tud ina l   ae rodynamic   cha rac t e r i s t i c s  of t h e   t r a n s p o r t   a i r p l a n e  model  would 
be  of a s t o c h a s t i c   n a t u r e .  



The  purposes  of  the  present  investigation,  therefore,  were  to  determine 
the  trailing-vortex-attenuation  effectiveness of semicircular  fin  configura- 
tions,  in  both  single  and  double  sets, on the  transport  airplane  model  at  a 
trim  lift  coefficient of 1.2 and  also  to  determine  the  effects  that  these  fin 
configurations  have on the  longitudinal  aerodynamic  characteristics  of  the 
transport  airplane  model.  The  direct-measurement  technique  described  in  refer- 
ence 3 was  used  to  obtain  trailing-wing  rolling-moment  data  with  the  trailing 
wing  model  at 7.8 transport  model  wing  spans  behind  the  transport  airplane 
model.  (For  the  full-scale  transport  airplane, 7.8 wing  spans  represent  a 
downstream  distance  of 0.25  n.  mi.) 

SYMBOLS 

All  data  are  referenced  to  the  wind  axes.  The  pitching-moment  coeffi- 
cients  are  referenced  to  the  quarter-chord  of  the  wing  mean  aerodynamic  chord. 
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lift  coefficient, - 
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trailing-wing  rolling-moment  coefficient, 
Trailing-wing  rolling  moment 

Pitching  moment 
pitching-moment  coefficient, 

qs& 

wing  chord,  m 

wing  mean  aerodynamic  chord,  m 

incidence  angle  of  horizontal  tail,  referred  to  fuselage  reference 
line  (positive  direction  trailing  edge  down),  deg 

free-stream  dynamic  pressure,  Pa 

wing  area, m2 

system  of  axes  originating  at  left  wing  tip  of  transport 
airplane  model  (see  fig. 1 )  

longitudinal,  lateral,  and  vertical  dimensions  measured  from 
trailing  edge  of  left  wing  tip of transport  airplane  model,  m 



l a te ra l  dimension  measured  f rom  fuselage  reference  l ine,  m 

ang le  of attack o f   fu se l age   r e fe rence  l i n e  (wing  incidence  angle is 
2O relat ive to  f u s e l a g e   r e f e r e n c e   l i n e ) ,   d e g  

OL i n c i d e n c e   a n g l e   o f   f i n   r e l a t i v e  to undis turbed   tunnel   f low  (pos i t ive  
d i r e c t i o n  when leading  edge  toward  fuselage)  (see f ig .   3 )  , deg 

Subsc r ip t s :  

max  maximum 

trim  trim 

Tw t r a i l i n g  wing  model 

W t r a n s p o r t   a i r p l a n e  model 

MODEL AND APPARATUS 

A t h ree -v iew  ske tch   and   t he   p r inc ipa l   geomet r i c   cha rac t e r i s t i c s   o f   t he  
0.03-scale  model  of  the  jumbo-jet   transport   airplane are shown i n   f i g u r e  1 .  
Figure 2 is a pho tograph   o f   t he   t r anspor t   a i rp l ane  model  mounted  on a s t i n g  
i n  the  Langley V/STOL tunne l .  The t r a n s p o r t   a i r p l a n e  model was t h e  same as 
t h a t   u s e d   i n   t h e   i n v e s t i g a t i o n   o f   r e f e r e n c e  3. Semic i rcu lar   f ins   having   bo th  
f l a t - p l a t e  and C l a r k  Y a i r f o i l   s h a p e s   ( r e f .  4) were t e s t e d   s i n g u l a r l y  and i n  
pairs. The f i n s  were p ivoted   about   the i r   cen ter   on   the   30-percent   chord   l ine  
of t h e  wing.  Figure 3 is a ske tch  showing t h e   d e t a i l s  and   loca t ions   o f   the  
f i n s   o n   t h e   t r a n s p o r t  model.  The f i n s   f o r   t h e   o n e - f i n   c o n f i g u r a t i o n s  were 
l o c a t e d  a t  0.38b/2,  0.42b/2,  and  0.46b/2. The f i n s   f o r   t h e  two-f i n  conf  igu- 
r a t i o n s  were a t  0.42b/2  and  0.50b/2  and a t  0.46b/2 and  0.53b/2.  Photographs 
of t h e   f i n   c o n f i g u r a t i o n s  are p resen ted  as f i g u r e  4. 

A photograph  along  with  the  dimensions  of  the  unswept  trail ing wing  model 
i n s t a l l e d  on t h e   t r a v e r s e  mechanism is p resen ted   i n   f i gu re  5. The t r a i l i n g  
wing  model  had a span  and  aspect  ra t io  t y p i c a l   o f   s m a l l - s i z e   t r a n s p o r t  
a i r p l a n e s .  

The test s e c t i o n  of the  Langley V/STOL tunne l   has  a he igh t   o f  4.42 m, a 
width of 6.63 m, and a length   o f  14.24 m. The t r a n s p o r t   a i r p l a n e  model was 
s t ing  supported  near   the  forward  end  of   the  tunnel  test sec t ion   on  a s i x -  
component s t ra in-gage  balance  system  which  measured  the  forces   and moments. 
The ang le  of attack of t h e   t r a n s p o r t  model was determined  from  an acceler- 
ometer mounted i n   t h e   f u s e l a g e .  The t r a i l i n g  wing  model was mounted  on a 
single-component  strain-gage r o l l  balance  which was a t t a c h e d  to a t r a v e r s e  
mechanism capable  of moving t h e  model  both l a t e r a l l y  and v e r t i c a l l y .   ( S e e  
f i g s .  2 and 5.)  The la teral  a n d   v e r t i c a l   p o s i t i o n s  of t h e   t r a i l i n g  wing  model 
were measured  by ou tpu t s   f rom  d ig i t a l   encode r s .  The e n t i r e  traverse mecha- 
nism,  which  could be mounted to t h e   t u n n e l  floor a t  v a r i o u s   t u n n e l   l o n g i t u d i n a l  
pos i t i ons   downs t r eam  o f   t he   t r anspor t   a i rp l ane  model, was l o c a t e d  a t  only  one 
downst ream  pos i t ion   for   these  tests. 
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TESTS AND CORRECTIONS 

Transpor t   Ai rp lane  Model 

The f ree-s t ream  dynamic   p ressure   in   the   tunnel  tes t  s e c t i o n   f o r  a l l  tests 
was 430.9 Pa which  corresponds to  a v e l o c i t y  of 26.5 m/sec. The Reynolds num- 
ber f o r   t h e  tests was approximately 4.7 x l o5   based   on   t he  wing mean aerody- 
namic  chord.  Transit ion s t r ips  approximately 0.30 c m  wide  of No.  60 a b r a s i v e  
g r i t  were placed 2.54 c m  behind   the   l ead ing   edge   of   the   wing;   na tura l   t rans i -  
t i o n  was used  elsewhere. The basic long i tud ina l   ae rodynamic   cha rac t e r i s t i c s  
were obta ined   over  a range  of   angle  of attack from  approximately -4O to  24O. 
A l l  tests were made with  leading-edge  devices   extended,   landing  gear  down, and 
l a n d i n g   f l a p s   d e f l e c t e d  to 30°. (See   re f .  1 . ) 

Blockage   cor rec t ions  were appl ied  to  t h e  data by t h e  method of   re fe r -  
ence  5. Jet-boundary  correct ions were applied to the   ang le   o f  attack and t h e  
drag   in   accordance   wi th   re fe rence  6 .  

T r a i l i n g  Wing Model 

The t r a i l i n g  wing model toge ther   wi th  its assoc ia ted   ro l l -ba lance   sys tem 
was used as a sensor  to  measure   the   vor tex- induced   ro l l ing  moment caused  by 
t h e   v o r t e x  flow downstream  of   the  t ransport   a i rplane model. N o  t r a n s i t i o n  
g r i t  was applied to  t h e   t r a i l i n g  model. The t r a i l i n g  model was pos i t i oned  
n e a r   t h e   a f t   e n d   o f   t h e   t u n n e l  test sect ion  (7 .8   t ransport-model  wing spans 
beh ind   t he   t r anspor t   a i rp l ane   mode l ) ,  and t h e   t r a v e r s e  mechanism was pos i t i oned  
l a t e r a l l y  a n d   v e r t i c a l l y  so t h a t   t h e   t r a i l i n g   v o r t e x  was nea r   t he   cen te r   o f   t he  
mechanism. The t r a i l i n g   v o r t e x  was p r o b e d   w i t h   t h e   t r a i l i n g  model. A l a r g e  
number of  trail ing-wing  roll ing-moment data p o i n t s   ( u s u a l l y  from 50 to 1 0 0 )  
were obtained  f rom  the l a t e ra l  t r a v e r s e s  a t  s e v e r a l   v e r t i c a l   l o c a t i o n s  to 
ensure  good d e f i n i t i o n   o f   t h e   v o r t e x  wake so t h a t   t h e  maximum t ra i l ing-wing  
r o l l i n g  moment could  be de te rmined .   In   add i t ion ,   ce r t a in  test  cond i t ions  were 
repeated a t  selected i n t e r v a l s   d u r i n g   t h e  t es t  period, and   the   da ta  were found 
to be repea tab le .  All trail ing-wing  roll ing-moment  data were ob ta ined   w i th   t he  
t r a n s p o r t   a i r p l a n e  model a t  a trim l i f t   c o e f f i c i e n t   o f   1 . 2  ( C L , t r i m  = 1 . 2 ) .  

RESULTS AND DISCUSSION 

Transport   Airplane Model 

Figures  6 to  11 p re sen t   t he   l ong i tud ina l   ae rodynamic   cha rac t e r i s t i c s   o f  
t h e   t r a n s p o r t   a i r p l a n e  model wi th   bo th   the  one-  and  two-semicircular-fin con- 
f igura t ions   pos i t ioned   a long   the   30-percent -chord   l ine   o f   each  wing panel  a t  
s e v e r a l   s p a n w i s e   l o c a t i o n s   a n d   f o r   s e v e r a l   f i n   i n c i d e n c e   a n g l e s .   F i g u r e s   6 ,  
7,   8,  and 9 (with it = Oo) show tha t   fo r   any  of t he   one - f in   con f igu ra t ions ,  
a t  a l ift coe f f i c i en t   o f   1 .2 ,   t he re  is a p e n a l t y   i n   d r a g   c o e f f i c i e n t   o f  
about 0.02. Also, an  increase  of  about 0.5O to 0.75O in   ang le   o f  at tack of 
t h e   t r a n s p o r t   a i r p l a n e  model is requi red  to maintain a l i f t  c o e f f i c i e n t   o f  1.2. 
The d a t a   i n   f i g u r e  9 i n d i c a t e   t h a t   t h e r e  is no  advantage  of   the C l a r k  Y air- 
f o i l  f i n   o v e r   t h e  f la t -plate  a i r f o i l   f i n  a t  a f i n   i n c i d e n c e   a n g l e   o f  36O. 
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For   the   two-f in   conf igura t ions   wi th  it = Oo ( f i g s .  1 0  and 1 1 )  t h e   p e n a l t y   i n  
d r a g   c o e f f i c i e n t ,  a t  a l i f t  c o e f f i c i e n t   o f  1 .2 ,  v a r i e s  from  about 0.04 a t  f i n  
incidence  angles   of  24O to about 0.06 a t  f in   i nc idence   ang le s   o f  36O. Corre- 
spondingly ,   for   the   two-f in   conf igura t ions ,   an   increase   in   angle  of attack of 
t h e   t r a n s p o r t   a i r p l a n e  mode1 of  from  about 0.75O to 1 .50° is requ i r ed  to  main- 
t a i n  a l i f t   c o e f f i c i e n t  of 1.2. A l l  the f i n   c o n f i g u r a t i o n s   i n v e s t i g a t e d  
caused a r e d u c t i o n   i n  maximum l i f t   c o e f f i c i e n t .  (See   f igs .  6 to  1 1 . )  These 
d a t a  also show t h a t  a l l  t h e   f i n   c o n f i g u r a t i o n s   g a v e  a pos i t i ve   i nc remen t   i n  
nose-up  pitching-moment coe f f i c i en t   and   t ha t   t he   l i nea r   r ange   o f   p i t ch ing -  
moment c o e f f i c i e n t   g e n e r a l l y  was extended to a h igher   angle  of attack. 

Based   on   the   d i scuss ion   presented  i n  r e fe rence  2, it was a n t i c i p a t e d   t h a t  
t he   ove ra l l   f l ow  ove r   t he  wing  would be improved  by t h e   f i n s .  However, during 
t h i s   i n v e s t i g a t i o n ,   o b s e r v a t i o n s  made o f   t u f t s   i n s t a l l e d   o n   t h e   f i n s  and  on t h e  
wing  and f l a p s   b e h i n d   t h e   f i n s  showed t h a t   t h e   f l o w  was sepa ra t ed   and   t u rbu len t  
over   the   f in   and   downst ream  of   the   f in .   These   observa t ions   ind ica ted   tha t   there  
was an area on   t he  wing  downstream  of  the  f ins  over  which  the l i f t  was reduced. 
T h i s   r e d u c t i o n   i n   l i f t ,   t h e r e f o r e ,   r e q u i r e d  an inc rease   i n   ang le   o f  at tack of 
t h e   t r a n s p o r t   a i r p l a n e  model to maintain a g i v e n   l i f t   c o e f f i c i e n t .   T h i s  sepa- 
r a t e d   c o n d i t i o n   c o u l d   c o n t r i b u t e  to the   pos i t ive   increment   in   nose-up   p i tch ing-  
moment c o e f f i c i e n t   o b t a i n e d   f o r  a l l  t h e   f i n   c o n f i g u r a t i o n s .  

Table I p r e s e n t s   t h e   a n g l e   o f  at tack, h o r i z o n t a l - t a i l   i n c i d e n c e   a n g l e ,  
and   measured   drag   cof f ic ien t   for   each   of   the   f in   conf igura t ions  a t  a trim l i f t  
c o e f f i c i e n t  of  1.2 (CL, trim = 1.2) . For t h e  trimmed condi t ions ,   the   angle-of -  
attack changes  and  the  drag  penal t ies   due to t h e   f i n s  are s l i g h t l y  smaller than  
i n d i c a t e d  by t h e   d a t a   f o r   t h e   t r a n s p o r t   a i r p l a n e  model w i t h   t h e   h o r i z o n t a l  t a i l  
set  a t  an  incidence  angle   of  Oo. (See   f igs .  6 to  1 1 .) For f i n   i n c i d e n c e  
angles   f rom 24O to 36O, the   i nc rease   i n   ang le   o f  at tack requ i r ed  to maintain a 
trim l i f t   c o e f f i c i e n t  of 1.2  varied  from  about Oo to  0.3O for the   one - f in  con- 
f i g u r a t i o n s  and from about 00 to 1.3O for   the   two-f in   conf igura t ions .  The d rag  
c o e f f i c i e n t   p e n a l t y  was about 0.02 for   the   one- f in   conf igura t ions   and   var ied  
from  about 0.03 to 0.06 for   the   two-f in   conf igura t ions .  

T r a i l i n g  Wing Model 

The maximum rol l ing-moment   coeff ic ient   measured by t h e   t r a i l i n g  wing  model 
a n d   t h e   p o s i t i o n  of t h i s  model r e l a t i v e  to  t h e   l e f t  wing t i p  o f   t h e   t r a n s p o r t  
a i r p l a n e  model are p r e s e n t e d   i n   f i g u r e   1 2  as a func t ion   o f   f i n   spanwise   l oca t ion  
f o r  a one-fin ( C l a r k  Y a i r f o i l )   c o n f i g u r a t i o n .   T h e s e  data i n d i c a t e   t h a t   t h e  
e f f e c t i v e n e s s   o f   t h e   f i n   i n   r e d u c i n g  the induced   ro l l ing  moment o n   t h e   t r a i l i n g  
model is dependent   on  f in   spanwise location; t h e   l a r g e s t   r e d u c t i o n  was r e a l i z e d  
when t h e   f i n  was l o c a t e d  a t  the   42-percent   semispan   loca t ion .   In   re fe rence  2, 
t h e   l a r g e s t   r e d u c t i o n  was also shown to occur   with  the € i n  a t  the  42-percent  
semispan  locat ion.  

The maximum ro l l i ng -moment   coe f f i c i en t   measu red   by   t he   t r a i l i ng  wing model 
and t h e   p o s i t i o n  of t h i s  model r e l a t i v e  to t h e   l e f t  wing t i p  of t h e   t r a n s p o r t  
a i r p l a n e  model are p r e s e n t e d   i n   f i g u r e   1 3  as a f u n c t i o n  of f i n   i n c i d e n c e   a n g l e s  
for a l l  f in   configurat ions.   These  measurements  were made w i t h   t r a n s p o r t  air- 
plane model a t  a trim l i f t  c o e f f i c i e n t  of 1 .2 .   Genera l ly ,   the   f igure  shows 
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t h a t ,   o v e r   t h e   r a n g e   o f   f i n   i n c i d e n c e   a n g l e  from 24O to 36O, t h e   f i n s  reduce 
the   induced   ro l l ing-moment   coef f ic ien t   on   the   t ra i l ing  wing  model as t h e   f i n  
inc idence   angle  is i n c r e a s e d .   T h i s   r e s u l t  is similar to t h e   r e s u l t   i n   r e f e r -  
ence 2. The o n l y  data po in t   ob ta ined  a t  a f i n   i n c i d e n c e   a n g l e   g r e a t e r   t h a n  36O 
was t h a t   f o r  the flat-plate f i n  a t  an   inc idence   angle   o f  90°. The r e d u c t i o n   i n  
t r a i l i n g - w i n g   r o l l i n g - m o m e n t   c o e f f i c i e n t   w i t h   t h e   f l a t - p l a t e   f i n  a t  an   inc i -  
dence  angle  of 90° was about  20 p e r c e n t  less than  when t h e   f i n   i n c i d e n c e   a n g l e  
was 36O. For a one- f in   conf igura t ion ,   the  maximum r e d u c t i o n   i n   i n d u c e d   r o l l i n g  
moment m e a s u r e d   o n   t h e   t r a i l i n g  model was about  50 p e r c e n t ;   f o r  a two-fin  con- 
f i g u r a t i o n ,   t h e  maximum reduct ion  was about  60 percent .  These r e s u l t s  are 
similar to t h o s e   i n   r e f e r e n c e  2. Figure  13 also shows t h a t ,  a t  a f i n   i n c i -  
dence  angle  of 36O, a f i n   w i t h  a f la t -plate  a i r f o i l   s e c t i o n  was e s s e n t i a l l y  as 
e f f e c t i v e   i n   r e d u c i n g   t h e   i n d u c e d   r o l l i n g  moment o n   t h e   t r a i l i n g  model as was 
a f i n   w i t h  a C l a r k  Y a i r f o i l   s e c t i o n .  

A summary of  the  trail ing-wing  roll ing-moment data and t h e  associated 
p e n a l t i e s   i n   d r a g   a n d  maximum l i f t  o f   t h e   t r a n s p o r t  model f o r  a l l  f i n  con- 
f i g u r a t i o n s  is p r e s e n t e d   i n   f i g u r e  1 4 .  The rolling-moment  and  drag data were 
o b t a i n e d   w i t h   t h e   t r a n s p o r t  model a t  a trim l i f t   c o e f f i c i e n t   o f  1.2.  The 
va lues  of CLrmax were ob ta ined   w i th   t he   ho r i zon ta l  t a i l  set  a t  Oo. Fig- 
ure 1 4  shows t h a t ,   f o r  a l l  t h e   f i n   c o n f i g u r a t i o n s ,  the maximum l i f t   c o e f f i c i e n t  
o f   t h e   t r a n s p o r t  model is reduced as t h e   f i n   i n c i d e n c e   a n g l e  is increased ,   wi th  
t h e   l a r g e s t   r e d u c t i o n s   i n   l i f t   c o e f f i c i e n t   b e i n g   f o r   t h e   t w o - f i n   c o n f i g u r a t i o n s .  
For t h e   o n e - f i n   c o n f i g u r a t i o n s ,   t h e   i n c r e a s e   i n   d r a g   c o e f f i c i e n t  was about  0.02 
throughout   the  range of f i n   i n c i d e n c e   a n g l e  from 24O to 36O; whereas, for the  
two-f in   conf igura t ions ,   the   d rag   coef f ic ien t   increment   increased  from about 
0.03 to 0.06 as the   f in   inc idence   angle   increased   f rom 24O to 36O. 

SUMMARY OF RESULTS 

R e s u l t s  have  been  presented  of   an  invest igat ion made i n  t h e  Langley V/STOL 
t unne l  t o  determine, by the   t r a i l i ng -wing   s enso r   t echn ique ,   t he   t r a i l i ng -vor t ex -  
a l l e v i a t i o n   e f f e c t i v e n e s s   o f   b o t h  a one-  and a two-f in   configurat ion (semi- 
circular wi th  radius of  0.043  semispan)  on t h e  wing of a t r a n s p o r t   a i r p l a n e  
model a t  var ious  spanwise  locat ions  and  incidence  angles .  An assessment was 
a l s o  made of the   d rag   and  l i f t  p e n a l t i e s  of these   dev ices  on t h e   t r a n s p o r t  
a i r p l a n e  model. 

R e s u l t s  from tests of a one- f in   conf igura t ion  made a t  spanwise   loca t ions  
of  0.38 semispan, 0.42 semispan,  and 0.46 s e m i s p a n   i n d i c a t e d   t h a t   t h e   l a r g e s t  
r e d u c t i o n   i n   i n d u c e d   r o l l i n g  moment on t h e   t r a i l i n g  wing model was r e a l i z e d  
when t h e   f i n  was located a t  0.42 semispan. 

A l l  f i n   c o n f i g u r a t i o n s   i n v e s t i g a t e d   r e d u c e d  t h e  i n d u c e d   r o l l i n g  moment on 
t h e   t r a i l i n g  wing model. The l a r g e s t   r e d u c t i o n s  were r e a l i z e d  a t  a f i n   i n c i -  
dence  angle of 36O fo r   bo th   t he   one - f in   con f igu ra t ion   ( r educ t ion   o f   abou t  
50 percent )   and   the   two-f in   conf igura t ion   ( reduct ion   of  about 60 pe rcen t ) .  

O b s e r v a t i o n s   o f   t u f t s   o n   t h e   f i n  and  wing  of t h e   t r a n s p o r t   a i r p l a n e  model 
ind ica t ed   t ha t   t he   f l ow  ove r   t he   f i n s   and   ove r   t he   t r anspor t   a i rp l ane  model 
wing d m n s t r e a m   o f   t h e   f i n s  was separated and  turbulent .  
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The  results  of  this  investigation  indicate  that,  at  fin  incidence  angles 
from  24O  to  36O, all  fin  configurations  caused  a  reduction  in  maximum  lift 
coefficient,  an  increase in  drag  coefficient,  and a  positive  increment  in  nose- 
up  pitching-moment  coefficient on the  transport  airplane  model.  The  increase 
in  drag  coefficient  was  about  0.02  for  the  one-fin  configuration  throughout  the 
test  range of fin  incidence  angles.  The  increase  in  drag  coefficient  for  the 
two-fin  configuration  varied  from  about 0.03  to 0.06 for  fin  incidence  angles 
of 24O  to  36O,  respectively. 

Langley  Research  Center 
National  Aeronautics  and  Space  Administration 
Hampton, VA 23665 
May 1 1 ,  1979 
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TABLE I.- ANGLE OF ATTACK, DRAG COEFFICIENT, AND HORIZONTAL-TAIL 

INCIDENCE ANGLE FOR F I N  CONFIGURATIONS AT C L , t r i m  = 1.2 

Spanwise 
location 
of f i n  

F i n s  off 

0.38b/2 

.42 b/2 

.42b/2 

.42b/2 

.42b/2 

.42b/2 

.46b/2 

.46 b/2 

.42b/2 and 

.50 b/2 

.42b/2 and 

.50 b/2 

.46b/2 and 

.53b/2 

.46b/2 and 

.53b/2 

.46b/2 and 

.53b/2 

Fin 
a i r  f oi 1 
sect ion  

.. .. 

Fins  of€ 

C l a r k  Y 

C l a r k  Y 

C l a r k  Y 

C l a r k  Y 

Fla t  plate  

Flat  plate  

C l a r k  Y 

C l a r k  Y 

C l a r k  Y 

C l a r k  Y 

C l a r k  Y 

C l a r k  Y 

C l a r k  Y 

". - " .. . 

Fin 
incidence 

angle ,  a f r  
deg 

F ins  off 

30 

24 

30 

36 

36 

90 

24 

30 

24 

30 

24 

30 

36 

~- . .. 

a ,  
deg 

2.79 

2.78 

3.1 1 

3.1 3 

2.98 

3.1 3 

3.74 

2.96 

2.80 

2.70 

3.78 

3.1 8 

3.39 

4.05 

. . .~ 

. ." 

CD 

0.21  8 

.233 

.233 

.235 

.235 

.234 

.247 

.235 

.236 

.244 

.268 

.256 

.268 

.274 

.. . 

it, 
deg 

. .. 

-2.0 

-1.4 

-1 .o 

-.8 

-.8 

-2.0 

-2.0 

-1 .o 

-1.2 

0 

0 

0 

.2 

-. 5 

" 
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Wing 

Span, m 1.79 
Mean  aerodynamic  chord, m 0.25 
Root chord, m 0.497 
Tip  chord, m 0.121 
Sweepback at quarter  chord, deg 37.5 
Area,  m2 0.460 
Aspect rat io 6.96 

Fuselage 

Length, m 2.06 

Horizontal  tai l  

Span, m 
Area,  m2 
Aspect rat  io 

0.664 
0.123 
3.6 

Z '  
4 

I Moment  reference 

b 2 Wl 

Y' 

1.790 - .664 - I 

1 
I 

I/- - I I 

/ 
I 

"" ._____ -2.060 
-Fuselage  reference  line 

Figure 1 .- Three-view  sketch of 0.03-scale   t ransport   a i rplane model wi th  f l a p s  and gear 
retracted.  Linear  dimensions  are i n  meters. 



L-78-3587 

Figure 2.- Transpor t   a i rp lane  model i n  the Langley V/STOL tunnel .   (Traverse   f rame  for   t ra i l ing  
wing  model is a l s o  shown.) 



Airfoi l   sect ion 
t I Flat  plate - Clark Y 

TRad ius  0.038 

Detail of semic i rcu lar   f ins  

0.30~ I’ 

Spanwise  Location  of  Fins 

Configuration y/(b/2) 
1 f i n   o n  each 0.38 
wing .42 

.46 

2 f ins   on   each 0.42 & .50 
wing .46 & .53 

1 

Figure 3.- Sketch of f i n s  on t ranspor t   a i rp lane  model.  Linear  dimensions a re  i n  meter S. 



(a) One f i n  on  each wing. 

(b) Two f i n s  on each wing. 

Figure 4.- Fins  on t r a n s p o r t   a i r p l a n e  model. 
L-79-165 



L-75-2411.2 
Figure 5.- Unswept t r a i l i n g  wing model on t r ave r se  mechanism (looking up a t  model  from 

point s l i g h t l y   i n   f r o n t  of traverse  frame).  Model has NACA 0012 a i r f o i l   s e c t i o n .  
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(a) Lift  and  drag coefficients. 

Figure 6.- Effect of  spanwise  location  of  one fin on  longitudinal aero- 
dynamic  characteristics of the  transport  airplane  model  with  the 
Clark Y airfoil  fin  located  along 30-percent-chord line at Clf = 30°. 
it = Oo; landing  flap configuration. 
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(b) Pitching-moment coefficient. 

Figure 6.- Concluded. 
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1 
Off 
24 
30 
36 

ti 

. . _  

1.8 2.0 .6 .8 

(a)  Lift and  drag  coefficients. 

Figure 7.- Effect  of af of one  fin on longitudinal  aerodynamic  characteristics 
of  the  transport  airplane  model  with the Clark Y airfoil fin  located  along 
30-percent-chord line  at 0.42b/2. it = Oo; landing  flap  configuration; 
landing  gear down. 
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Figure 7.- Concluded. 
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(a) L i f t  and drag coefficients. 

Figure 8.- Effect of af of one  fin on longitudinal  aerodynamic 
characteristics of transport  airplane  model  with  the  Clark Y 
airfoil fin located along 30-percent-chord line at 0.46b/2. 
it = OO; landing flap  configuration; landing gear down. 
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Figure 8.- Concluded. 
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(a) L i f t  and   d rag   coe f f i c i en t s .  

F igure  9.- E f f e c t  of a i r f o i l   s e c t i o n   o f   o n e   f i n   o n   l o n g i t u d i n a l  
ae rodynamic   cha rac t e r i s t i c s   o f   t r anspor t   a i rp l ane  model w i t h   t h e  
f in   loca ted   a long   30-percent -chord   l ine  a t  0.4213/2; cxf = 36O. 
it = Oo; l a n d i n g   f l a p   c o n f i g u r a t i o n ;   l a n d i n g  gear down. 
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Figure 9. - Concluded. 
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Figure 10.- Effect of Olf of  two  fins on longitudinal  aerodynamic 
characteristics of transport  airplane  model  with  the  Clark Y 
airfoil  fins  located along  30-percent-chord line at 0.42b/2 and 
0.50b/2. it = Oo; landing flap  configuration; landing  gear down. 

22 



.2 

0 

Cm 

-.2 

-.4 

' t  

4 
4 

- 

-.6 - 
-5 0 5 '0 

Q ,deg 
20 25 

t I 

- .4 

-.6 -. 2 1.0 0 .8 1.2 1.4 I .6 I .8 2.0 

Pitching-moment  coefficient. 

Figure 10.- Concluded. 
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(a) Lift and drag coefficients. 

Figure 1 1  .- Effect of af of two fins on longitudinal aerodynamic 
characteristics of transport airplane model with  the Clark Y 
airfoil fins located along  30-percent-chord line at 0.46b/2 and 
0,53b/2. it = 00; landing flap configuration: landing gear down. 
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0 

Figure 12.- Variation of trailing-wing location and rolling-moment coeffi- 
cient with fin  spanwise  location for one  Clark Y airfoil fin located 
along 30-percent-chord line at af = 30°. Trailing-wing model located 
7.8 transport  airplane  model wing spans behind transport  airplane model; 
CL,trim = 1.2. 
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Figure 14.- Summary of reductions in maximum  trailing-wing  rolling-moment 
coefficient and penalties in drag  and maximum lift  obtained  for various 
fin configurations.  Trailing-wing model  located 7.8 transport model 
wing spans behind transport  airplane model. 
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